Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Nat Commun ; 15(1): 2460, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503747

RESUMO

The mammalian orthoreovirus (reovirus) σNS protein is required for formation of replication compartments that support viral genome replication and capsid assembly. Despite its functional importance, a mechanistic understanding of σNS is lacking. We conducted structural and biochemical analyses of a σNS mutant that forms dimers instead of the higher-order oligomers formed by wildtype (WT) σNS. The crystal structure shows that dimers interact with each other using N-terminal arms to form a helical assembly resembling WT σNS filaments in complex with RNA observed using cryo-EM. The interior of the helical assembly is of appropriate diameter to bind RNA. The helical assembly is disrupted by bile acids, which bind to the same site as the N-terminal arm. This finding suggests that the N-terminal arm functions in conferring context-dependent oligomeric states of σNS, which is supported by the structure of σNS lacking an N-terminal arm. We further observed that σNS has RNA chaperone activity likely essential for presenting mRNA to the viral polymerase for genome replication. This activity is reduced by bile acids and abolished by N-terminal arm deletion, suggesting that the activity requires formation of σNS oligomers. Our studies provide structural and mechanistic insights into the function of σNS in reovirus replication.


Assuntos
Orthoreovirus , Reoviridae , Animais , Orthoreovirus/genética , Replicação Viral , Reoviridae/genética , RNA/metabolismo , Ácidos e Sais Biliares , RNA Viral/genética , Mamíferos/genética
3.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
5.
Annu Rev Virol ; 10(1): i, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774131
6.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37577609

RESUMO

The reovirus σNS RNA-binding protein is required for formation of intracellular compartments during viral infection that support viral genome replication and capsid assembly. Despite its functional importance, a mechanistic understanding of σNS is lacking. We conducted structural and biochemical analyses of an R6A mutant of σNS that forms dimers instead of the higher-order oligomers formed by wildtype (WT) σNS. The crystal structure of selenomethionine-substituted σNS-R6A reveals that the mutant protein forms a stable antiparallel dimer, with each subunit having a well-folded central core and a projecting N-terminal arm. The dimers interact with each other by inserting the N-terminal arms into a hydrophobic pocket of the neighboring dimers on either side to form a helical assembly that resembles filaments of WT σNS in complex with RNA observed using cryo-EM. The interior of the crystallographic helical assembly is positively charged and of appropriate diameter to bind RNA. The helical assembly is disrupted by bile acids, which bind to the same hydrophobic pocket as the N-terminal arm, as demonstrated in the crystal structure of σNS-R6A in complex with bile acid, suggesting that the N-terminal arm functions in conferring context-dependent oligomeric states of σNS. This idea is supported by the structure of σNS lacking the N-terminal arm. We discovered that σNS displays RNA helix destabilizing and annealing activities, likely essential for presenting mRNA to the viral RNA-dependent RNA polymerase for genome replication. The RNA chaperone activity is reduced by bile acids and abolished by N-terminal arm deletion, suggesting that the activity requires formation of σNS oligomers. Our studies provide structural and mechanistic insights into the function of σNS in reovirus replication.

7.
mBio ; 14(4): e0105823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37535397

RESUMO

Enterovirus D68 (EV-D68) is a nonpolio enterovirus associated with severe respiratory illness and acute flaccid myelitis (AFM), a polio-like illness causing paralysis in children. AFM outbreaks have been associated with increased circulation and genetic diversity of EV-D68 since 2014, although the virus was discovered in the 1960s. The mechanisms by which EV-D68 targets the central nervous system are unknown. Since enteroviruses are human pathogens that do not routinely infect other animal species, establishment of a human model of the central nervous system is essential for understanding pathogenesis. Here, we describe two human spinal cord organoid (hSCO)-based models for EV-D68 infection derived from induced, pluripotent stem cell (iPSC) lines. One hSCO model consists primarily of spinal motor neurons, while the another model comprises multiple neuronal cell lineages, including motor neurons, interneurons, and glial cells. These hSCOs can be productively infected with contemporary strains, but not a historic strain, of EV-D68 and produce extracellular virus for at least 2 weeks without appreciable cytopathic effect. By comparison, infection with hSCO with another enterovirus, echovirus 11, causes significant structural destruction and apoptosis. Together, these findings suggest that EV-D68 infection is not the sole mediator of neuronal cell death in the spinal cord in those with AFM and that secondary injury from the immune response likely contributes to pathogenesis. IMPORTANCE AFM is a rare condition that causes significant morbidity in affected children, often contributing to life-long sequelae. It is unknown how EV-D68 causes paralysis in children, and effective therapeutic and preventative strategies are not available. Mice are not native hosts for EV-D68, and thus, existing mouse models use immunosuppressed or neonatal mice, mouse-adapted viruses, or intracranial inoculations. To complement existing models, we report two hSCO models for EV-D68 infection. These three-dimensional, multicellular models comprised human cells and include multiple neural lineages, including motor neurons, interneurons, and glial cells. These new hSCO models for EV-D68 infection will contribute to understanding how EV-D68 damages the human spinal cord, which could lead to new therapeutic and prophylactic strategies for this virus.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Criança , Humanos , Animais , Camundongos , Medula Espinal/patologia , Paralisia/complicações , Neurônios Motores
8.
Immunity ; 56(9): 2070-2085.e11, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37557168

RESUMO

Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic ß-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and ß-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.


Assuntos
Autoimunidade , Pâncreas , Camundongos , Animais , Pâncreas/patologia , Fígado , Linfócitos T , Linfonodos
9.
Immunity ; 56(8): 1862-1875.e9, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478853

RESUMO

Loss of oral tolerance (LOT) to gluten, driven by dendritic cell (DC) priming of gluten-specific T helper 1 (Th1) cell immune responses, is a hallmark of celiac disease (CeD) and can be triggered by enteric viral infections. Whether certain commensals can moderate virus-mediated LOT remains elusive. Here, using a mouse model of virus-mediated LOT, we discovered that the gut-colonizing protist Tritrichomonas (T.) arnold promotes oral tolerance and protects against reovirus- and murine norovirus-mediated LOT, independent of the microbiota. Protection was not attributable to antiviral host responses or T. arnold-mediated innate type 2 immunity. Mechanistically, T. arnold directly restrained the proinflammatory program in dietary antigen-presenting DCs, subsequently limiting Th1 and promoting regulatory T cell responses. Finally, analysis of fecal microbiomes showed that T. arnold-related Parabasalid strains are underrepresented in human CeD patients. Altogether, these findings will motivate further exploration of oral-tolerance-promoting protists in CeD and other immune-mediated food sensitivities.


Assuntos
Antígenos , Imunidade Inata , Animais , Camundongos , Humanos , Dieta , Glutens , Células Dendríticas , Tolerância Imunológica
10.
Proc Natl Acad Sci U S A ; 120(24): e2219404120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276413

RESUMO

Nogo-66 receptor 1 (NgR1) binds a variety of structurally dissimilar ligands in the adult central nervous system to inhibit axon extension. Disruption of ligand binding to NgR1 and subsequent signaling can improve neuron outgrowth, making NgR1 an important therapeutic target for diverse neurological conditions such as spinal crush injuries and Alzheimer's disease. Human NgR1 serves as a receptor for mammalian orthoreovirus (reovirus), but the mechanism of virus-receptor engagement is unknown. To elucidate how NgR1 mediates cell binding and entry of reovirus, we defined the affinity of interaction between virus and receptor, determined the structure of the virus-receptor complex, and identified residues in the receptor required for virus binding and infection. These studies revealed that central NgR1 surfaces form a bridge between two copies of viral capsid protein σ3, establishing that σ3 serves as a receptor ligand for reovirus. This unusual binding interface produces high-avidity interactions between virus and receptor to prime early entry steps. These studies refine models of reovirus cell-attachment and highlight the evolution of viruses to engage multiple receptors using distinct capsid components.


Assuntos
Orthoreovirus , Reoviridae , Animais , Humanos , Receptor Nogo 1/metabolismo , Ligação Viral , Proteínas Virais/metabolismo , Ligantes , Reoviridae/metabolismo , Orthoreovirus/metabolismo , Receptores Virais/metabolismo , Mamíferos/metabolismo
11.
Nat Commun ; 14(1): 2615, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147336

RESUMO

Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.


Assuntos
Orthoreovirus de Mamíferos , Receptores Imunológicos , Receptores Virais , Infecções por Reoviridae , Animais , Humanos , Camundongos , Anticorpos Antivirais , Orthoreovirus de Mamíferos/fisiologia , Receptores Imunológicos/metabolismo , Infecções por Reoviridae/metabolismo , Receptores Virais/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(21): e2220741120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186838

RESUMO

Mammalian orthoreoviruses (reoviruses) serve as potential triggers of celiac disease and have oncolytic properties, making these viruses potential cancer therapeutics. Primary attachment of reovirus to host cells is mainly mediated by the trimeric viral protein, σ1, which engages cell-surface glycans, followed by high-affinity binding to junctional adhesion molecule-A (JAM-A). This multistep process is thought to be accompanied by major conformational changes in σ1, but direct evidence is lacking. By combining biophysical, molecular, and simulation approaches, we define how viral capsid protein mechanics influence virus-binding capacity and infectivity. Single-virus force spectroscopy experiments corroborated by in silico simulations show that GM2 increases the affinity of σ1 for JAM-A by providing a more stable contact interface. We demonstrate that conformational changes in σ1 that lead to an extended rigid conformation also significantly increase avidity for JAM-A. Although its associated lower flexibility impairs multivalent cell attachment, our findings suggest that diminished σ1 flexibility enhances infectivity, indicating that fine-tuning of σ1 conformational changes is required to successfully initiate infection. Understanding properties underlying the nanomechanics of viral attachment proteins offers perspectives in the development of antiviral drugs and improved oncolytic vectors.


Assuntos
Orthoreovirus , Reoviridae , Animais , Proteínas do Capsídeo/química , Reoviridae/metabolismo , Orthoreovirus/metabolismo , Proteínas Virais/metabolismo , Ligação Viral , Anticorpos Antivirais , Mamíferos/metabolismo
13.
J Infect Dis ; 227(3): 457-465, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196388

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) is an arbovirus that periodically emerges to cause large epidemics of arthritic disease. Although the robust immunity elicited by live-attenuated virus (LAV) vaccine candidates makes them attractive, CHIKV vaccine development has been hampered by a high threshold for acceptable adverse events. METHODS: We evaluated the vaccine potential of a recently described LAV, skeletal muscle-restricted virus (SKE), that exhibits diminished replication in skeletal muscle due to insertion of target sequences for skeletal muscle-specific miR-206. We also evaluated whether these target sequences could augment safety of an LAV encoding a known attenuating mutation, E2 G82R. Attenuation of viruses containing these mutations was compared with a double mutant, SKE G82R. RESULTS: SKE was attenuated in both immunodeficient and immunocompetent mice and induced a robust neutralizing antibody response, indicating its vaccine potential. However, only SKE G82R elicited diminished swelling in immunocompetent mice at early time points postinoculation, indicating that these mutations synergistically enhance safety of the vaccine candidate. CONCLUSIONS: These data suggest that restriction of LAV replication in skeletal muscle enhances tolerability of reactogenic vaccine candidates and may improve the rational design of CHIKV vaccines.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Animais , Camundongos , Vírus Chikungunya/genética , Febre de Chikungunya/prevenção & controle , Vacinas Virais/genética , Anticorpos Neutralizantes , Mutação , Vacinas Atenuadas/genética , Anticorpos Antivirais
14.
J Virol ; 97(1): e0144222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541803

RESUMO

Pathological effects of apoptosis associated with viral infections of the central nervous system are an important cause of morbidity and mortality. Reovirus is a neurotropic virus that causes apoptosis in neurons, leading to lethal encephalitis in newborn mice. Reovirus-induced encephalitis is diminished in mice with germ line ablation of NF-κB subunit p50. It is not known whether the proapoptotic function of NF-κB is mediated by neural-cell-intrinsic (neural-intrinsic) processes, NF-κB-regulated cytokine production by inflammatory cells, or a combination of both. To determine the contribution of cell type-specific NF-κB signaling in reovirus-induced neuronal injury, we established mice that lack NF-κB p65 expression in neural cells using the Cre/loxP recombination system. Following intracranial inoculation of reovirus, 50% of wild-type (WT) mice succumbed to infection, whereas more than 90% of mice lacking neural cell NF-κB p65 (Nsp65-/-) survived. While viral loads in brains of WT and Nsp65-/- mice were comparable, histological analysis revealed that reovirus antigen-positive areas in the brains of WT mice displayed increased immunoreactivity for cleaved caspase-3, a marker of apoptosis, relative to Nsp65-/- mice. These data suggest that neural-intrinsic NF-κB-dependent factors are essential mediators of reovirus neurovirulence. RNA sequencing analysis of reovirus-infected brain cortices of WT and Nsp65-/- mice suggests that NF-κB activation in neuronal cells upregulates genes involved in innate immunity, inflammation, and cell death following reovirus infection. A better understanding of the contribution of cell type-specific NF-κB-dependent signaling to viral neuropathogenesis could inform development of new therapeutics that target and protect highly vulnerable cell populations. IMPORTANCE Viral encephalitis contributes to illness and death in children and adults worldwide and has limited treatment options. Identifying common host factors upregulated by neurotropic viruses can enhance an understanding of virus-induced neuropathogenesis and aid in development of therapeutics. Although many neurotropic viruses activate NF-κB during infection, mechanisms by which NF-κB regulates viral neuropathogenesis and contributes to viral encephalitis are not well understood. We established mice in which NF-κB expression is ablated in neural tissue to study the function of NF-κB in reovirus neurovirulence and identify genes activated by NF-κB in response to reovirus infection in the central nervous system. Encephalitis following reovirus infection was dampened in mice lacking neural cell NF-κB. Reovirus induced a chemokine profile in the brain that was dependent on NF-κB signaling and was similar to chemokine profiles elicited by other neurotropic viruses. These data suggest common underlying mechanisms of encephalitis caused by neurotropic viruses and potentially shared therapeutic targets.


Assuntos
Encefalite Viral , Neurônios , Infecções por Reoviridae , Reoviridae , Animais , Camundongos , Apoptose/genética , Apoptose/imunologia , Quimiocinas/imunologia , Encefalite Viral/imunologia , Encefalite Viral/virologia , Neurônios/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Reoviridae/imunologia , Reoviridae/patogenicidade , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia
15.
J Gen Virol ; 103(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36394457

RESUMO

Spinareoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (9-12 linear segments) dsRNA genomes of 23-29 kbp. Spinareovirids have a broad host range, infecting animals, fungi and plants. Some have important pathogenic potential for humans (e.g. Colorado tick fever virus), livestock (e.g. avian orthoreoviruses), fish (e.g. aquareoviruses) and plants (e.g. rice ragged stunt virus and rice black streaked dwarf virus). This is a summary of the ICTV Report on the family Spinareoviridae, which is available at ictv.global/report/spinareoviridae.


Assuntos
Fungos , RNA de Cadeia Dupla , Animais , Humanos , Plantas , Especificidade de Hospedeiro , Filogenia
16.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215107

RESUMO

Sedoreoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (10-12 linear segments) dsRNA genomes of 18-26 kbp. Sedoreovirids have a broad host range, infecting mammals, birds, crustaceans, arthropods, algae and plants. Some of them have important pathogenic potential for humans (e.g. rotavirus A), livestock (e.g. bluetongue virus) and plants (e.g. rice dwarf virus). This is a summary of the ICTV Report on the family Sedoreoviridae, which is available at ictv.global/report/sedoreoviridae.


Assuntos
Mamíferos , RNA de Cadeia Dupla , Animais , Aves , Genoma Viral , Humanos , Plantas , Vírion , Replicação Viral
17.
Annu Rev Virol ; 9(1): i-ii, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36173696
18.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35993365

RESUMO

Celiac disease is an immune-mediated intestinal disorder that results from loss of oral tolerance (LOT) to dietary gluten. Reovirus elicits inflammatory Th1 cells and suppresses Treg responses to dietary antigen in a strain-dependent manner. Strain type 1 Lang (T1L) breaks oral tolerance, while strain type 3 Dearing reassortant virus (T3D-RV) does not. We discovered that intestinal infection by T1L in mice leads to the recruitment and activation of NK cells in mesenteric lymph nodes (MLNs) in a type I IFN-dependent manner. Once activated following infection, NK cells produce type II IFN and contribute to IFN-stimulated gene expression in the MLNs, which in turn induces inflammatory DC and T cell responses. Immune depletion of NK cells impairs T1L-induced LOT to newly introduced food antigen. These studies indicate that NK cells modulate the response to dietary antigen in the presence of a viral infection.


Assuntos
Tolerância Imunológica , Células Matadoras Naturais , Animais , Anticorpos Antivirais , Camundongos
19.
NPJ Vaccines ; 7(1): 77, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794181

RESUMO

SARS-CoV-2 vaccines BNT162b2, mRNA-1273, and Ad26.COV2.S received emergency use authorization by the U.S. Food and Drug Administration in 2020/2021. Individuals being vaccinated were invited to participate in a prospective longitudinal comparative study of immune responses elicited by the three vaccines. In this observational cohort study, immune responses were evaluated using a SARS-CoV-2 spike protein receptor-binding domain ELISA, SARS-CoV-2 virus neutralization assays and an IFN- γ ELISPOT assay at various times over six months following initial vaccination. mRNA-based vaccines elicited higher magnitude humoral responses than Ad26.COV2.S; mRNA-1273 elicited the most durable humoral response, and all humoral responses waned over time. Neutralizing antibodies against the Delta variant were of lower magnitude than the wild-type strain for all three vaccines. mRNA-1273 initially elicited the greatest magnitude of T cell response, but this declined by 6 months. Declining immunity over time supports the use of booster dosing, especially in the setting of emerging variants.

20.
Am J Manag Care ; 28(6): e228-e231, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738230

RESUMO

OBJECTIVES: Health systems must adapt to an increased consumer-centric environment to remain relevant in an ever-growing competitive health care landscape in which convenience is a key driver of patient satisfaction and loyalty. To adapt to this new environment, health systems must redesign processes to transform the delivery of ambulatory care and provide near real-time access to specialty care. STUDY DESIGN: A pediatric academic medical center in western Pennsylvania used a process-improvement approach to enhance timely access to specialty care and deliver a consumer-centric patient experience. METHODS: Critical factors in this process included engagement of key stakeholders, implementation of scheduling best practices, development of a set of scheduling guidelines, increased use of advanced practice providers, and use of data analytics to measure and benchmark performance. RESULTS: The time to schedule a new patient appointment decreased from 42 to 4 days and the patient satisfaction access domain increased by 57 percentile points. CONCLUSIONS: These factors should scale to other institutions, thereby enabling generalizable results.


Assuntos
Agendamento de Consultas , Satisfação do Paciente , Centros Médicos Acadêmicos , Assistência Ambulatorial , Criança , Participação da Comunidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...